

PII: S0040-4039(96)01328-7

Trans Hydrindanes by Dimide Reduction: Synthesis of Dihydro-B-nortestosterone and its 17α -Methyl Derivative

Alexander Kasal*, Hana Chodounská, Woiciech J. Szczepekb

^aInstitute of Organic Chemistry and Biochemistry, 166 10 Prague 6, Czech Republic

^bPharmaceutical Research Institute, 01-793 Warsaw, Poland.

Abstract. Reductive hydroboration of Δ^5 -B-norsteroids (e.g., 1) affords 5α -dihydro products (e.g., 3) in a low yield. Better yields, however, were obtained by reduction with diimide. The method was employed in the synthesis of potential antiandrogens - 17B-hydroxy-B-nor- 5α -androstan-3-one (8) and its 17α -methyl derivative (9). Copyright © 1996 Elsevier Science Ltd

In the formation of hydrindanes from unsaturated derivatives (e.g., by hydrogenation), cis hydrindanes are known^{1,2} to be the preferred products. E.g., on addition, Δ^{14} -unsaturated steroids as well as Δ^{5} -unsaturated B-norsteroids yield mainly C/D and cis A/B cis products (e.g., 2), respectively. This preference affected the total synthesis of steroids even 40 years ago³.

R = cholestane side chain

Scheme 1

The major hindrance to the 5ß-approach of a reagent was recently^{4,5} attributed to the presence of an angular methyl group. If relative yields of formation of 5α , 6α - and 5β , 6β -epoxides indicate the relative steric hindrance of the double bonds involved, the Δ^5 -double bond in B-norsteroids is much more accessible, than the same double bond in normal steroids, to an electrophilic attack of reagents from the α -side leading to substituted trans hydrindanes⁶. This steric factor was not manifest in reversible reactions, however, stereospecific addition reactions proceeding in a four-centre mechanism (e.g., hydroboration, reduction with diimide), which does not allow for internal rotation or inversion of intermediates, should produce even better yields of 5α -adducts (i.e., A/B trans products) than corresponding classical steroids with six-membered rings A and B. Recent results of this more direct approach to such B-nor- 5α -steroids are presented here.

Hydroboration, followed by oxidation, of Δ^{14} -olefins was⁷ successfully utilized in the synthesis of 15 α -hydroxy steroids. Now we used a similar sequence in the transformation of B-norcholesterol (1). Hydroboration and treatment of borane formed with propionic acid yielded B-nor-5 α -cholestan-3 β -ol (3, 9%). HNMR spectrum of the product confirms an axial character of the 3 α -proton (triplet of triplets, J=11.0 and 8.9 Hz). No 5 β -isomer 2 was found in the mixture either by NMR spectroscopy of the crude reaction product, or by TLC analysis.

The best reagent for the desired reduction of Δ^5 -B-norsteroids to A/B trans products was found to be diimide^{8,9}. Treatment of olefins (e.g., 1,4,5) with p-toluenesulfonyl hydrazine in collidine at 150 °C yielded 5 α -dihydro derivatives (3,6,7) in good yields (85-95 %).

On oxidation, compounds 6 and 7 afforded ketones 8 and 9. The latter¹⁰ represents the sought-for 5α -dihydro derivative of 17-methyl-B-nor-testosterone, the former was hydrolyzed to the 5α -dihydro derivative of B-nor-testosterone (10). Because of the difficulties in their synthesis, their biological activity has not been thoroughly tested. However, it is of great interest since B-nortestosterone and its derivatives act as antiandrogens¹¹. The biological activity of 9 and 10 will be reported elsewhere.

References and Notes:

- 1. Mandai T.; Matsumoto T.; Kawada M.; Tsuii J. Tetrahedron 1993, 49, 5483-5493.
- 2. Cleve A.; Neef G.; Ottow E.; Scholz S.; Schwede W. Tetrahedron 1995, 51, 5563-5572.
- 3. Wieland P.; Heusler K.; Ueberwasser H.; Wettstein A. Helv. Chim. Acta 1956, 41, 74-103.
- Hanson J. R.; Hitchockock P. B.; Liman M.D.; Nagaratnam S. J. Chem. Soc., Perkin Trans. 1, 1995, 2183-2187.
- Morzycki J. W.; Wilczewska A. Z.; Zochowska E.; Lotowski Z. Heterocycles 1995, 41, 2729-2736.
- 6. On oxidation with MPA, compound yields 1 5α, 6α-epoxide only.
- Hosoda H., Yamashita K., Tanado K., Nambara T. Chem. Pharm. Bull. 1977, 25, 2650-2656.
- 8. Pasto D. J.; Taylor R. T.: Reduction with diimide. In *Organic Reactions*, Vol. 40; Paquette, L. A. Ed.; John Willey and Sons, Inc.: New York, 1991; pp. 91-155.
- 9. E.g., compound 5 (200 mg, 0.69 mmol) and p-toluenesulfonhyl hydrazide (600 mg, 3.22 mmol) in collidine (3 ml) was heated to 150 °C for 3 h. The solvent was evaporated in a vaccum, the residue was dissolved in chloroform and washed with aqueous hydrochloric acid (5%), water, potassium carbonate (7%) and water, and dried. After evaporation compound 7 crystallized from acetone. M.p. 159-160 °C (186 mg, 92.5 %), [α]_D -33° (methanol).
- 10. Compound 9: m.p. 168-168.5 °C, $[\alpha]_D$ +5° (c 1.4). Compound 10: m.p. 176.5-177 °C (acetone-heptane), $[\alpha]_D$ +27.4° (lit. 12 records 173-174 °C and +38°). $\Delta\epsilon_{291}$ +1.63 (methanol). The 5 β -isomer exerts a negative Cotton effect ($\Delta\epsilon_{288}$ -1.50, methanol).
- 11. Maresh V. B.; Zarate A.; Roper B. K., Greenblat R. B. Steroids 1966, 8, 297-308.
- 12. Joska J.; Fajkoš J.; Šorm F. Collect. Czech. Chem. Commun. 1963, 25, 2341-2357.